Free, Open Entrepreneur Office Hours Come to Baltimore

Services Include Advice on Business Strategy, Financing, Intellectual Property, Technology Transfer and Introductions to Resources

Pictured: The Columbus Center, located in Baltimore's Inner Harbor. Baltimore Entrepreneur Office Hours will located in the Columbus Center, home to the Institute for Marine and Environmental Technology (IMET).

Pictured: The Columbus Center, located in Baltimore’s Inner Harbor and home to the Institute for Marine and Environmental Technology (IMET), where Baltimore Entrepreneur Office Hours are hosted.

The Maryland Technology Enterprise Institute (Mtech) and the Institute for Marine and Environmental Technology (IMET) are partnering with representatives from the greater Baltimore entrepreneurship community to offer free, open Baltimore Entrepreneur Office Hours on the third Tuesday of each month. Interested entrepreneurs and innovators can walk in, or reserve a slot online at www.eoh.umd.edu/Baltimore.html.

These services, offered to the entire Baltimore community, are modeled after Mtech’s Entrepreneur Office Hours at the University of Maryland, through which more than 1,000 entrepreneurs have received assistance since 2007.

“We are excited to partner with Mtech Baltimore Director Martha Connolly and Mtech Ventures Director Craig Dye to bring the institute’s expertise, along with business and legal professionals in the region, to cultivate the flourishing entrepreneurship ecosystem in Baltimore,” said Russell Hill, Director of IMET. “Baltimore Entrepreneur Office Hours are a great first step for current or aspiring entrepreneurs to receive free and impartial advice, brainstorm business strategies, investigate funding opportunities and learn about additional resources available to entrepreneurs.”

Baltimore Entrepreneur Office Hours will help aspiring and current entrepreneurs with tech-based startups or ideas get advice on how to:

  • Build and finance a startup company;
  • Develop and protect intellectual property;
  • Navigate the technology transfer process;
  • Refine their business strategy for rapid growth; and
  • Tap into additional entrepreneurial resources

Representatives from the following organizations and groups and more will typically be on hand to speak with entrepreneurs and innovators one-on-one regarding any questions they might have about starting a company or commercializing a technology:

“Mtech is enthusiastic about the opportunity of bringing entrepreneur office hours to Baltimore,” said Peter Sandborn, Director of Mtech. “We have found this service to be an effective way of supporting our own entrepreneurial community by providing them with free access to proven experts, along with connections to the vast resources available to them in the State of Maryland. We look forward to getting to know the thriving entrepreneurship community in Baltimore.”

Baltimore Entrepreneur Office Hours are open and free to any interested innovators or entrepreneurs in the greater Baltimore region. Participants can walk in or reserve a slot online at www.eoh.umd.edu/Baltimore.html.

Redox, UMD, Microsoft, Trans-Tech to Develop Transformational Natural Gas Fuel Cells Through $5 Million in ARPA-E Funding

Redox solid oxide fuel cell

Redox Power Systems LLC, the University of MarylandMicrosoft Corporation and Trans-Tech Inc. (a subsidiary of Skyworks Solutions Inc.) are teaming to develop transformational fuel cells through a $5 million cooperative agreement funded by the Advanced Research Projects Agency – Energy (ARPA-E) Reliable Electricity Based on ELectrochemical Systems (REBELS) program, company and university officials jointly announce today.

The goal of the project is to further advance Redox’s high-performance fuel cells and drive them to market-readiness for a broad range of applications, including low-cost distributed power generation and heating and cooling for homes, and for Microsoft—which is providing additional support for the project—energy-efficient datacenters.

These new markets complement Redox’s existing 25 kW product, known as “The Cube,” which is designed for larger commercial structures and can comfortably power a gas station, moderately sized grocery store or small shopping plaza.

The technological advances resulting from this project will also open the door for additional applications such as transportation.

“This project will finally make fuel cells an affordable technology,” said Professor Eric Wachsman, Director of the University of Maryland Energy Research Center (UMERC) in the A. James Clark School of Engineering, who is also a Redox co-founder. “All of the elements we are going to work on—lower temperature, higher power density, faster startup time and load following—these will make fuel cells easier to sell by bringing their cost down even further. It accelerates everything.”

Fuel cells—or devices that convert the chemical energy of a fuel source into electrical energy—are optimal for distributed power generation systems, which generate power close to where it is used, according to ARPA-E. Distributed generation systems offer an alternative to the large, centralized power generation facilities or power plants that are currently commonplace.

Those systems, powered by natural gas (or a wide variety of alternative fuel sources, including liquid fuels such as gasoline and diesel) through Redox’s solid oxide fuel cells, could become a reality if this project is successful.

Led by Fulton, Md.-based Redox, the three-year ARPA-E agreement has UMD partnering with the company to improve its solid oxide fuel cells by the following minimum requirements:

  • Reduce the operating temperatures of their record high-power-density fuel cells from an already industry-leading 650 degrees Celsius to the 300-500 °C range;
  • Enable a start-up time of less than ten minutes; and
  • Respond to electrical load changes, from 10-90 percent power in less than one minute.

“This will be a major advancement in our fuel cell technology,” said Bryan Blackburn, Chief Technology Officer and co-founder of Redox. “It will not be incremental. We are working on every aspect of the cell—the anode, the cathode, the electrolyte. The materials will be different. Every single aspect will synergistically come together to form our highest performing, lowest-cost fuel cell.”

Solid Oxide Fuel Cell

View a high-resolution diagram of the Redox solid oxide fuel cell depicting how it works.

Trans-Tech Inc., based in Adamstown, Md., will work with Redox and UMD to ramp up the commercial production of new cell materials. They will also work with Redox to manufacture the improved fuel cells, establishing ways to reduce production costs. By bringing a large manufacturer like Trans-Tech into the development process early on and working with fuel cells produced using industrial processes, the required time-to-market for new generations of enhanced cells will decrease.

Redox will also redesign its fuel cell stacks to achieve ARPA-E performance targets and reduce costs even further, after which they go to Microsoft for integration and independent live testing in the company’s server racks.

“Our vision is to bring the power plant directly into the datacenter by integrating fuel cell stacks into every server cabinet, effectively eliminating energy loss that otherwise occurs in the energy supply chain and doubling the efficiency of traditional datacenters,” said Sean James, Senior Research Program Manager for Microsoft Global Foundation Services. “We expect to effectively double our efficiency, from fuel to load, while cutting out many points of failure. The resulting system could be significantly less expensive than traditional datacenter designs. Overall, we believe the advancements being made in fuel cells will someday change the game in terms of how energy is delivered and managed.”

Microsoft is also a powerful buyer.

“In this case the partner is also the potential customer,” explained Blackburn. “If Microsoft adopts these fuel cell systems at a large scale, they could provide just the right initial market and critical mass to drive the cost of our fuel cells down even further.”

The Redox-led project is one of 13 funded by the REBELS program, which ARPA-E announced on June 19, 2014, worth a total of $33 million.

“These 13 REBELS projects are an excellent example of how ARPA-E is developing innovative technology options to transform and modernize America’s evolving electric grid,” said ARPA-E Acting Director Dr. Cheryl Martin. “Distributed generation technologies like these could fundamentally change the way America generates and stores energy.”

Redox, initially co-founded by Wachsman and Blackburn after the former spent 25 years developing industry-leading solid oxide fuel cells, was a winner in the 2012 University of Maryland $75K Business Plan Competition, run by the Maryland Technology Enterprise Institute (Mtech). After winning the competition, the company entered Mtech’s VentureAccelerator Program, which helps University of Maryland inventors get their research out of laboratories and into industry by creating successful companies.

Three months later, the company was reformed along with an outside investment and management team and moved to Fulton, Md.

UMD Alumni Hatch Sub-$300 Consumer 3D Printer, Raise $3.3 Million on Kickstarter

The Micro 1

Two University of Maryland graduates have designed The Micro, a consumer-friendly, sub-$300 3D printer, and are quickly staging one of the most successful Kickstarter campaigns of all-time to produce it, hauling in $3.3 million with more than 10,000 backers.

The Micro raced past its $50,000 goal in just 11 minutes and hit the $1 million mark in 25 hours, faster than the Pebble watch, which took 28 hours.

Now, with less than 24 hours to go in a 30-day campaign, this is the last chance to order from the first batch of The Micro 3D printers on Kickstarter, a Web-based funding platform for creative projects.

3D printing, also called additive manufacturing, is a process of making a three-dimensional solid object of virtually any shape from a computer-generated digital model.

“A 3D printer is a magical box that creates things,” said Michael Armani (B.S., mechanical engineering, 2005 and Ph.D., bioengineering, 2010), co-founder ofM3D, the company he launched with David Jones (B.S., computer science, 2006). “It’s that simple. There is nothing on your desk one second, and the next you have it.”

The Micro 2

Weighing just two pounds, medium watermelon-sized and box-shaped, The Micro can be used to create anything from custom jewellery, cookie cutters, everyday objects around the house, and even real engineering and artistic prototypes, according to the company. Much like a paper printer, The Micro attaches to a computer, through which users download or create models using M3D’s software, which company officials say is as interactive and enjoyable as playing a game. Once a model is selected, users hit print and the object is made.

“Starting with a seamless design, we created the Micro by preserving the best features of existing printers and redesigning everything else,” said Jones. “What’s more, we kept the cost of The Micro low by ensuring that it’s both space and power efficient, using as much power as a tablet would use. We are excited to be a part of the 3D printing revolution, and hope that The Micro will play its part in changing the way people build, innovate and create.”

Not only did Armani, Jones and the M3D team, which includes four others with UMD affiliations, create the most affordable 3D printer, they also claim 15 additional innovations over current models:

  1. Most space-efficient 3D printer ever made
  2. Lightweight, portable design fits nicely on a desk
  3. Micro motion chip provides completely automatic leveling and calibration
  4. Most quiet 3D printer ever made
  5. Lowest power consumption 3D printer ever made
  6. Carbon fiber rods: light, sturdy, self-lubricating and long-lasting
  7. Ceramic heater for rapid heat-up, power efficiency, reliability and safety
  8. Available in bold colors: silver, black, blue, red, orange and green
  9. New filament materials like Chameleon PLA.
  10. Inspirational Micro filament spools
  11. Modernized touch-capable software
  12. Replaceable print beds for alternative materials
  13. Replaceable nozzles for experimenters
  14. Designed for fast assembly in the U.S. for quality control
  15. An ABS-based print bed allows you to print larger ABS parts.

The Micro is powered by what the company collectively calls Micro Motion Technology™, a series of next generation innovations that together create precision at a fraction of the cost.

M3D plans to assemble its printers in the U.S. and is seeking manufacturing space in Montgomery County, Md. The company is based in Bethesda.
Armani and Jones met at UMD in 2002 while auditing a biology class that neither of them needed to graduate. Their friendship has grown ever since.

A serial entrepreneur, Armani won $5,000 in Mtech’s UMD $75K Business Plan Competition in 2010 for CloudSolar, a company he launched to develop solar energy technologies.

Additional UMD-affiliated M3D team members include: Danny Lee (B.S., 1989), Su Lee (economics, 2011), Aliaksandr Mamonau (electrical and computer engineering and computer science, expected fall 2015), and Syed Rahman (mechanical engineering, expected 2015).

High-resolution screenshots, logos and headshots are available here. For more information, please visit The Micro’s website here and M3D’s website here.

CoolCAD Launches Kickstarter Campaign for Security Keychain that Locks Your Computer When You Are Away

GateKeeper Chain

CoolCAD Electronics LLC, a University of Maryland-based electronics design company, just launched a 30-day Kickstarter campaign for its new GateKeeper Chain security product, a small, colorful key fob that automatically locks your computer when you leave and unlocks it when you return, university officials announce today.

The GateKeeper Chain works over Bluetooth 4.0 (Bluetooth SMART) wireless technology, combining a personal sensor with an encrypted connection that allows only its unique key to unlock your computer. The password is encrypted and stored on your PC, not the GK-Chain—so no one can steal it. The result is effortless security for your computer when you walk away, and easy access when you return.

“Our goal is provide people who use computers with optimal security and convenience,” said Electrical and Computer Engineering graduate Dr. Siddharth Potbhare (M.S. 2005, Ph.D. 2008), who co-founded CoolCAD. “It’s easy to forget to lock your computer when you leave your desk, and it’s a chore to log back in when you get back. GateKeeper takes care of both.”

As an extra layer of security, CoolCAD offers a companion smartphone application that lets you manage and track your keys, but more importantly—warns you when you leave your keys behind.

Initial prototypes work with PCs and Android phones, although the company is creating Macintosh and iOS versions as well.

Rewards for backers of the GateKeeper Chain Kickstarter campaign include access to pre-production-run prototypes, custom gold or silver key fobs, laboratory tours with CoolCAD’s engineers and designers, and up to 50 hours of one-on-one consulting to create customized products, which could include logos, additional branding and optional form factors.

CoolCAD plans to use its Kickstarter funding to take the patent-pending GateKeeper Chain from a fully functional prototype to a 200-unit pilot production run, which the company will use to obtain FCC certification and conduct comprehensive reliability testing and failure analysis tests.

Full production runs for the GateKeeper Chain are slated for June, with an expected delivery of the first 4,000 devices in July.

GateKeeper Chain

CoolCAD’s ten-member team includes Co-Founders UMD Electrical and Computer Engineering and Institute for Systems Research Professor Neil Goldsman, and Vice President and UMD alumnus Dr. Akin Akturk, who earned his Ph.D. in Electrical and Computer Engineering in 2006.

CoolCAD is a member of the Technology Advancement Program incubator, an initiative of the Maryland Technology Enterprise Institute (Mtech) in the A. James Clark School of Engineering, whose graduates include Martek Biosciences and Digene Corporation, both of whom were acquired for more than $1 billion. The company’s headquarters are in Mtech’s Technology Ventures Building, located off-campus near the College Park Metrorail station.

CoolCAD has acquired research and development projects and subcontracts totaling over $4 million over the past five years, including Phase I and Phase II SBIRs/STTRs and four Mtech Maryland Industrial Partnerships program grants with two different UMD professors.

Mtech TAP Incubator Graduate Neuralstem Inc. Closes $20 Million Investment

Neuralstem

Neuralstem Inc., a 2001 graduate of the Mtech Technology Advancement Program (TAP) incubator, announced that it closed on a $20 million investment from leading institutional and accredited investors in a registered direct placement of 6,872,859 shares of common stock at a price of $2.91 per share.

neuralstem_logoBased in Rockville, Md., Neuralstem, now a publicly traded biotherapeutics company, features a patented technology that enables the production of neural stem cells of the brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glial cells.

“We are very pleased to have raised the capital in this offering from leading institutional investors, including dedicated institutional healthcare investors. With the proceeds strengthening our cash balance, we have the resources to further advance our cell therapy and small molecule clinical trial programs,” said Richard Garr, President and Chief Executive Officer of Neuralstem.

Neuralstem’s NSI-566 spinal cord-derived stem cell therapy is in Phase II clinical trials for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig’s disease. Neuralstem has been awarded orphan status designation by the FDA for its ALS cell therapy.

Neuralstem was in TAP from April 1997 to December 2001. The company’s office space was accented with large, white canopies over its desks, creating a neural network-looking appearance when taken in aggregate.

In addition to ALS, Neuralstem is also targeting major central nervous system conditions with its NSI-566 cell therapy platform, including spinal cord injury and ischemic stroke. The company has received FDA approval to commence a Phase I safety trial in chronic spinal cord injury.

Neuralstem also maintains the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain’s capacity to generate neurons, possibly reversing pathologies associated with certain central nervous system conditions.  The company has completed a Phase I safety trial evaluating NSI-189, its first neurogenic small molecule product candidate, for the treatment of major depressive disorder (MDD). Additional indications might include traumatic brain injury (TBI), Alzheimer’s disease, and post-traumatic stress disorder (PTSD).

For more information about Neuralstem, visit www.neuralstem.com or connect with the company on TwitterFacebook or LinkedIn.

Pixelligent Granted Innovation Research Award for Next-Generation OLED Lighting

Pixelligent

Pixelligent Technologies, an Mtech TAP incubator graduate and MIPS funding recipient, recently announced it was awarded a Small Business Innovation Research (SBIR) Phase I grant by the Department of Energy (DOE).

The nine-month, $150,000 program will enable Pixelligent to accelerate the development of its nanoadditives for use in organic light-emitting diode (OLED) lighting, which is used to create digital displays in devices such as television screens, computer monitors, portable systems such as mobile phones, handheld games consoles and PDAs. As part of this program, Pixelligent will partner with OLEDWorks LLC, a leading OLED lighting company.

“As we continue working with the world’s leading electronics and next generation lighting companies, we are excited to partner with OLEDWorks, one of the leading American manufacturers of OLED lighting solutions”, said Craig Bandes, president and CEO of Pixelligent.

The SBIR program, established by the U.S. Congress, supports scientific excellence and technological innovation through the investment of federal research funds. The goal of the program, titled Advanced Light Extraction Material for OLED Lighting, is to develop an internal light-extraction structure that will be fully compatible with OLED device manufacturing processes and operating conditions that can expedite the commercialization of white OLED lighting.

“We are honored to receive this highly competitive grant from the DOE that recognizes the significant value our advanced materials can provide in Solid State Lighting (SSL) applications”, commented Dr. Gregory D. Cooper, CTO and Founder of Pixelligent Technologies.

Since 2012, the company has received three SBIR grants from the Department of Energy, totaling $1.3 million, to expedite the development of its advanced materials for commercial use.

Once occupying four wet labs and two offices in TAP from 2005 to 2011, Pixelligent moved to Baltimore in June, 2011. In 2012, the company expanded its footprint to include more than 13,000 sq. ft. and has increased its work force by nearly 150 percent since moving operations to Baltimore. This growth is attributed to the increased demand for its proprietary Zirconia nanocrystal additives and the progress Pixelligent has made in significantly scaling-up its manufacturing capacity. The company is now producing and shipping its nanocrystal additives to customers around the world.

Also in 2005, Pixelligent worked with UMD chemistry and biochemistry Professor Daniel Falvey through a Maryland Industrial Partnerships (MIPS) grant on nanocrystal additives for increased resolution in photolithography. The project helped Pixelligent as it transitioned its technology to other applications in semiconductor manufacturing and the electronics industry, according to the company.

In December 2012, The Baltimore Sun reported that Pixelligent was “searching the region for space for a manufacturing facility capable of increasing its capacity to make nanocrystal coatings for electronics and semiconductors by 10 times or more.”

Pixelligent has raised more than $17 million over the past four and a half years.

Pixelligent’s first three employees earned their Ph.D.s from the University of Maryland. Founder & CTO Greg Cooper earned his Ph.D.in Physics, Zhiyun Chen, Vice President of Engineering, earned his Ph.D. in Electrical Engineering, and Serpil Gonen Williams, Vice President of Product Development, earned her Ph.D. in Chemistry. Pixelligent also employs three other UMD graduates. Xia Bai and Selina Thomas both earned Ph.D.’s in Chemistry and Lei Zhang earned her Master’s in Material Science and Engineering.

Photos from Maryland Innovation Mpact: Bringing Fearless Ideas to Market, 10/23/13

DC I-Corps Now Accepting Applications for Fall Cohort

The new, NSF-supported program revolutionizes technology transfer from university, federal laboratories.

DC I-Corps Logo

The new DC Innovation Corps (I-Corps) program is now accepting applications for its October cohort.

Open to research teams and technology entrepreneurs from universities, federal laboratories, agencies and the general community in the Mid-Atlantic Region, the free program guides researchers in exploring the commercial potential of their inventions.

“DC I-Corps provides real-world, hands-on training on how to incorporate innovations into successful products,” said DC I-Corps Director Edmund Pendleton. “Our goal is to improve the success rate of technology transfer and commercialization from our world-leading research universities and federal labs by creating new venture or licensing opportunities for program participants.”

DC I-Corps guides participating teams through an intense, seven-week program that emphasizes extensive face-to-face meetings with potential customers, iterating and pivoting in response to resulting insights, and building early prototypes to get customer feedback. During this process, teams constantly adapt as they seek a true product-market fit for their innovations, while also searching for a repeatable and scalable business model.

The program is geared towards innovations coming from engineering fields, medical/health/life sciences, and physical and computer sciences. DC I-Corps builds upon the successful National Science Foundation (NSF) I-Corps program, but expands its scope to cover researchers and technologists that have no NSF affiliation or support.

What sets the program apart, however, is the fact that the curriculum is designed and delivered by experienced technology startup entrepreneurs, investors, and practitioners.

DC I-Corps incorporates “Lean Startup” principles developed for Silicon Valley startups, but tailors these approaches for technically complex, capital-intensive innovations being created in America’s world-renowned university and federal labs.

“In addition to exploring an invention’s market potential, we also show teams how to do more commercially oriented research from the beginning,” said Pendleton. We hope to inspire participants to be the next generation of technology startup entrepreneurs, whether they become the CEOs of companies or integral parts of a startup team.”

Sponsored by the National Science Foundation (NSF), DC I-Corps is designed to revolutionize technology transfer and commercialization from university and federal labs. The program, part of the NSF’s National Innovation Network, is jointly offered by the University of MarylandGeorge Washington University, and Virginia Tech.

DC I-Corps Director Edmund Pendleton is also director of the VentureAccelerator Program, an elite initiative of the Maryland Technology Enterprise Institute, or Mtech, that helps select University of Maryland inventors get their research out of laboratories and into industry by creating successful companies.

For more information and to apply, technology researchers and entrepreneurs are encouraged to visit www.dcicorps.org.

UMD Business Model Challenge Winner Launches First Crowdfunding Campaign, Raises $10,000 in One Week

Shield Boards LLC Set to Raise $25,000 Through Kickstarter to Help Fund the Mass Production of Wheel Shields

By Elena Sten

Chase Kaczmarek, a senior at the University of Maryland and founder of Shield Boards LLC, launched a Kickstarter campaign on August 5 to fund production of his company’s product, Wheel Shields, which eliminates a safety problem called “wheel bite” in skateboarding and longboarding. In just one week on Kickstarter, the company raised over $10,000.

This year’s first-place and $8,000 winner in the 2013 University of Maryland Business Model Challenge, Shield Boards LLC is hoping to raise $25,000 by September 4 to purchase a die cast mold needed to mass-produce and market the company’s injury-reducing skate and longboard accessory, Wheel Shields.

Wheel Shields are rounded covers for skateboard or longboard wheels intended to eliminate the problem of “wheel bite.” This phenomenon occurs during a hard turn when the bottom of the board comes in contact with the top of the wheels, causing the wheels to stop abruptly. This sudden change in speed throws riders to the ground, increasing their risk of injury.

Wheel Shields

Wheel Shields

After suffering from the effects of wheel bite a year ago, Kaczmarek set forth to develop a solution to the seemingly unavoidable problem.

“After experiencing wheel bite first-hand, I was surprised to find that there were no solutions for this problem on the market,” said Kaczmarek. “I began brainstorming ideas to eliminate wheel bite and improve the overall safety of skaters world-wide.”

One year and 20 prototypes later, Wheel Shields are coming to fruition. The patented technology is made from aircraft aluminum, an extremely durable material, and is compatible with most longboard or skateboard wheels under 75mm. A set of four shields weighs less than one pound.

Wheel Shields also provide splash protection when riding through wet terrain and open up new trick possibilities by letting skaters stand directly over their wheels. The newest prototype also covers less than half of the wheel, which reduces the likelihood of rocks getting caught inside and jamming wheels while riding.

WS Benefits

Shield Boards LLC also won first place at UMD’s Pitch Dingman Competition in February 2013, and was voted “coolest booth” at the University’s Cupid’s Cup Business and Innovation Showcase in April, sponsored by Under Armor Founder and CEO Kevin Plank.

For more information on Wheel Shields, or to help fund the company’s campaign, please visit www.bit.ly/WheelShields.

Led and managed by the Maryland Technology Enterprise Institute (Mtech), a unit of the A. James Clark School of Engineering at the University of Maryland, the UMD Business Model Challenge encourages students, faculty, researchers, staff and recent alumni at UMD and University of Maryland, Baltimore to leverage their talent and ideas to create tomorrow’s leading companies. The competition process, its mentors, partners and cash prizes have helped many students, faculty and researchers build their own companies.

Meet the Potential Future of Electricity Generation

Redox Power Systems, UMD Develop Breakthrough Fuel Cells that Bring Efficient, Green, Affordable, Always-On Electricity to Businesses and Homes

Redox Power Systems LLC and University of Maryland researchers have partnered to deliver breakthrough fuel cell technologies for providing always-on electricity to businesses, homes and eventually automobiles, at about one-tenth the cost and one-tenth the size of current commercial fuel cell systems, university and company officials jointly announce today.

Those fuel cells, based upon patented technology developed by Professor Eric Wachsman, director of the University of Maryland Energy Research Center (UMERC) in the A. James Clark School of Engineering, are the foundation of a system being commercialized by Redox that provides safe, efficient, reliable, uninterrupted power, on–site and optionally off the grid, at a price competitive with current energy sources.

The promise is this: generate your own electricity with a system nearly impervious to hurricanes, thunderstorms, cyber attacks, derechos, and similar dangers, while simultaneously helping the environment.

“Every business or home should be able to safely generate its own energy,” saidWarren Citrin, CEO and director of Redox. “We currently rely upon a vulnerable electrical grid. The best way to decrease that vulnerability is through distributed energy, that is, by making your own energy on-site. We are building systems to do that, with an emphasis on efficiency and affordability. These should be common appliances.”

Enter Redox’s PowerSERG 2-80, also called “The Cube,” which connects to your natural gas line and electrochemically converts methane to electricity. Just larger than a dishwasher, the system sits comfortably in a basement, outside of a building, or on a roof, and—with no engine and virtually no moving parts—quietly goes about its business of providing power.

The first-generation Cube runs off natural gas, but it can generate power from a variety of fuel sources, including propane, gasoline, biofuel and hydrogen. The system is a highly efficient, clean technology, emitting negligible pollutants and much less carbon dioxide than conventional energy sources. It uses fuel far more efficiently than an internal combustion engine, and can run at an 80 percent efficiency when used to provide both heat and power.

Proprietary technical advances enable Redox to offer the Cube at a tenth of the cost of current systems. Combined with the increasing abundance and falling prices of natural gas, the company plans to offer electricity at prices competitive with current energy sources.

Redox plans to release The Cube in 2014. The first version will be configured to 25 kilowatts, which can comfortably power a gas station, moderately sized grocery store or small shopping plaza.

Additional power offerings will follow. Using different-sized fuel cell stacks, the company can offer The Cube at 5 kW, to provide always-on electricity for an average American home, or up to 80 kW in one system. Cubes can also be combined to provide even more power in a modular fashion.

A Better, Cheaper Fuel Cell: A 25-Year Breakthrough

Wachsman solid oxide fuel cell

View a high-resolution photo of a solid oxide fuel cell developed at the University of Maryland Energy Research Center.

Inside The Cube are stacks of small, ten-centimeter-square, millimeter-thick, solid oxide fuel cells. Like a battery, it has a cathode, an anode and an electrolyte, but the comparison ends there. Fuel cells don’t store electricity, rather, they create it, and they do so chemically, pulling oxygen ions from the air and conducting them through the cell, where they meet and oxidize the fuel on the other side, creating electricity. The materials of the cells are critical, and that’s where Wachsman’s expertise lies.

Solid Oxide Fuel Cell

View a high-resolution diagram of the Redox solid oxide fuel cell depicting how it works.

With more than 220 publications and eight patents, after receiving theElectrochemical Society High Temperature Materials Division’s 2012 Outstanding Achievement Award and the 2012 Fuel Cell Seminar Award, his election as Fellow to both the Electrochemical Society and the American Ceramic Society, and serving as Editor-in-Chief of Ionics and editor of Energy Systems, Wachsman’s greatest contribution may come after a hurricane rips through the East Coast and our lights are still on.

Two main problems have plagued solid oxide fuel cells: high operating temperature and high cost. Wachsman solved both.

Conventional solid oxide fuel cells operate as high as 950 degrees Celsius to run effectively. At this high temperature, the system can’t be easily turned on and off, performance degrades, and the balance of the system requires expensive, high-temperature alloys that drive up prices.

Wachsman decreased the operating temperature of solid oxide fuel cells to 650 degrees Celsius, with future reductions likely to 300 degrees. At these lower temperatures, the system can turn on much more rapidly, operate with greater reliability, and Redox can build out The Cube with conventional stainless steel parts rather than expensive alloys.

But Wachsman didn’t stop there. Drawing upon scores of graduate and undergraduate students over two and a half decades, millions of dollars in research funding and a state-of-the-art laboratory at the University of Maryland, he created fuel cells that generate ten times the power at these lower temperatures than anything else on the market, cutting the system’s cost by a factor of ten.

He did this by tackling nearly every aspect of the cell. He developed dual-layer electrolytes using new materials and dramatically improved the anode so it can withstand cycling the system on and off. No part escaped his expert touch, and the entire family of materials he created allows Redox to build systems for a wider range of applications.

“Over a 25-year time period, we have achieved major advances in both the composition of fuel cell materials and the micro and nanostructure of those materials,” said Wachsman. “Putting these together has resulted in a cell that has an extremely high power density, on the order of two watts per square centimeter.”

Citrin recognized the breakthrough. More power means you need less cells to do the same work, which also means the systems that contain them can be smaller.

“Wachsman’s advances allow us to build systems that are literally an order of magnitude smaller, an order of magnitude lighter, and an order of magnitude less expensive than anything that has gone before,” said Citrin.

Big Research Meets Big Business

Warren Citrin and Eric Wachsman

View a high-resolution photo of Redox CEO Warren Citrin, left, and Professor Eric Wachsman, Director of the University of Maryland Energy Research Center.

Wachsman started working on solid oxide fuel cells as a graduate student in the 1980s. He always intended for them to make it to market.

As far back as 2005, he and then-Ph.D. student Bryan Blackburn began exploring the idea of forming a company. In early 2012 they entered theVentureAccelerator Program, an elite initiative of the Maryland Technology Enterprise Institute, or Mtech, that helps select University of Maryland inventors get their research out of laboratories and into industry by creating successful companies.

After just three months, a record for the shortest time in the program, Wachsman and Blackburn teamed with Citrin and fellow entrepreneurs David Buscher and Robert Thurber to form Redox Power Systems.

The team of five, all members of the board of directors, garnered exclusive rights to Wachsman’s patents. Redox contracted research to UMD to further refine and improve the fuel cells.

Previously, Citrin, Buscher and Thurber built Solipsys, a radar technology company, which was acquired by Raytheon 2003. Collectively, the trio launched 13 additional companies, including Gloto, a company that provides innovative products and services to drive consumer engagement experiences across ads, social, mobile, and interactive TV.

In the future, Redox plans to produce fuel cell systems for automobiles, which the company claims could triple the gas mileage you get from your car.

But for now, they will be happy if, after the next Snowmageddon or Hurricane Sandy or after a vicious cyber attack, we all still have power.

Follow

Get every new post delivered to your Inbox.